
Harmonic Oscillation Lab  
Simple Harmonic Oscillation (SHO) stands high among the most important problems in all of Physics.  
It is a “Universal Problem” so to speak.  What’s particularly impressive is that the profusion of settings 
where we find it often look so very different from each other … and yet they behave the same.  That’s 
the idea behind the phrase “Universal Form”.  Buried inside each of these systems is a pattern … a 
universal pattern.  Once we recognize the pattern we can immediately “read off” the “universal 
consequences” that follow from that pattern.  We don’t have to solve the problem repeatedly.  This is 
really just an amplification of what we did before.  If before we realized that solving a problem 
symbolically allowed us to solve “an infinity” of problems in one fell swoop, well … now we’re just 
amplifying that by solving an infinity of infinities all at once.  We’re studying mechanics in this course 
– but the “pattern” will appear in electrodynamics, thermodynamics, quantum mechanics, acoustics 
and fluid dynamics, cosmology … even the stock market!  Everywhere! 
 

There are many ways to recognize the pattern but since this is mechanics we will start from Newton’s 
Second Law. 

𝑚(𝑑#𝑟/d𝑡#) = 	 𝐹⃗ 
 
Many a young student is not really aware that in writing this down Newton was also inventing the 
world’s first “Differential Equation”.  The whole idea is to start here and find out what the variable 
called 𝑟 is doing as time progresses.  How does it behave ? What’s its dependence on time ?  This 
depends crucially (though not exclusively) on the force and all its details.   
As we will discover, if the force is a “linear restoring force” … then we will see SHO as the solution.  
The bare mathematical equation we are looking for has the following “form” or “shape” : 
 

𝑑#𝑥
𝑑𝑡# = 	−𝜔

#𝑥 
 

In this equation the quantity “x” doesn’t have to be a length.  In fact it can be any kind of variable at 
all.  It can be an angle, an electric field strength, a density, a temperature … any variable at all.  It is 
clearly an “acceleration” of something and, of course, in mechanics comes from the left hand side of 
Newton’s 2nd Law.  The right hand side comes from the right hand side of Newton’s 2nd Law and has 
several characteristic features.  First, the quantity 𝜔#  is just a constant number and will be built out of 
the constants of the problem.  We have expressed it as a square to emphasize that it must be positive 
and then the minus sign in front makes for a definite negative overall sign.  Finally, the variable x 
appears once more … linearly. This is a crucial observation.  So these are the three things we look for :  
 

 1) a minus sign,   
 2) a positive constant,  
 3) the coordinate again to the first power. 
 
If that is what we have to start with, then the solution follows by an inescapable chain of reasoning as: 
 

𝑥(𝑡) = 𝐴 ∙ sin	(𝜔𝑡 +	𝜑𝒐) 
 

The constant numbers A and 𝜑𝒐   are called the amplitude and the phase shift and are chosen to fit the 
specific conditions of the problem.  Any values whatsoever of   A and 𝜑𝒐 still leave us with a solution 
which obeys the defining equation.  For those of you with a little more experience, they are constants 
of integration and come from “integrating the defining equation twice”.   



It’s important to understand that an equation and its solution are exactly the “same information” 
rearranged differently.  That’s the miracle of mathematics.  A few things are important to notice: 
 

1)  We could have used cosine instead of sine since these differ only by a “phase shift” … and we 
can make the constant 𝜑𝒐 anything we want and still satisfy the equation of motion. 
 

2) The constant 𝜔  appeared in the defining equation and by checking dimensions clearly has to 
be an “inverse time”.  Since the dominant feature of “oscillation” is to repeat at regular time 
intervals called the period  “T” … and since the trig functions repeat whenever the argument 
increases by 2𝜋 ,  we must have 𝜔𝑇 = 2𝜋  or equivalently 𝜔 = 2𝜋/𝑇  .  Clearly, 𝜔 has the 
meaning of  2𝜋 radians of angle every T worth of time.  Therefore 𝜔 is indeed the angular 
velocity. 
 

3) Of particular importance is the observation that the period T ( or equivalently	𝜔 ) has nothing to 
do with A, the amplitude.  No matter how large the swing is, the amount of time it takes to do it 
doesn’t change.  This is counter-intuitive and very surprising to most people. 

 

 
 
 
 
 
The Lab 
 
This lab will examine two systems: 1) a simple pendulum, and 2) a mass hanging from a simple spring.  
In each case you will take measurements successively by varying some feature of the system.  In the 
first case you will check that our predictions are upheld.  In the second case you will simply assume 
that the system truly is a SHO and use the properties that go with that to discover an amazing property 
of real springs.  You will discover that real springs have a “magic fraction” associated with themselves.  
This magic fraction is such that, if you take the total mass of the real spring and multiply it times the  
“magic fraction” and then “give that mass” to the mass hanging on the spring (and that it is 
accelerating), then the actual spring may be treated as “ideal and massless” from that point on.  This is 
a great way to make our real springs into ideal springs. 
 
 
 
 
 
 
 



The Simple Pendulum 
 

 
A mass m is swinging on the end of a string of length  l   .  The mass is actually 
executing motion along a circular arc.  The proper descriptive equation is thus the 
equation of circular motion: 𝐼𝛼 = 	𝜏  .  In this case, the moment of inertia 𝐼 =
𝑚𝑙#	and the torque 𝜏 = 	−	𝑚𝑔𝑙 ∙ sin	(𝜃) .  If we measure our angles in radians and 
keep the angle “smallish” ,   i.e. 𝜃	 ≪ 1  (remember, 1 radian is nearly 60 degrees so 
this is scarcely much of a restriction ), then we may use the “small angle 
approximation”, sin(𝜃) ≈ 𝜃.  Our equation of motion is well approximated as : 

𝑚𝑙#
𝑑#𝜃
𝑑𝑡# = 	−𝑚𝑔𝑙𝜃 

Canceling common factors yields: 
𝑑#𝜃
𝑑𝑡# = 	−

𝑔
𝑙 𝜃 

If we compare this with our SHO prototype equation, we see that the “constant cluster”  D
E
   stands in 

the place where we put the symbol  𝜔#  and, indeed, has the right dimensionality.  We conclude that it 
must follow: 

2𝜋
𝑇 	= 		F

𝑔
𝑙  

 
Equivalently we may write: 

𝑇# = 	
(2𝜋)#

𝑔 	 ∙ 𝑙 

  
This is the main result for our experiment.  It shows the dependence of the period on the string length, 
the mass (no dependence !), and of course no dependence on the starting angle.  You will verify these 
properties next. 
 

Experiment 1. 
Vary the mass and graph the outcome of  𝑇	vs. m   .  The pendulum has 𝑙  = .97 meter. 
 
Material Mass kg T seconds 
Aluminum 0.239 1.947 
 

Steel 0.667 2.0 
 

Bronze 0.707 1.987 
 

Copper 0.750 1.985 
 

Lead 0.908 1.974 
 

 
 
 
 
 



 
 
 
 
Experiment 2. 
Vary the string length and graph the outcome of  𝑇# vs. l   .  We then expect a straight line and the 
slope to be (#G)

H

D
 .  Once you have your graph, verify that it is linear, and then find the best straight-

line-fit and compare your slope to the prediction. 
 
Trial l  meters T seconds 
1 0.2  0.840 
 

2 0.4 1.276 
 

3 0.6 1.583 
 

4 0.8 1.818 
 

5 1.0 2.051 
 
 
 
 
 
 
 
 
Experiment 3. 
Vary the starting angle 𝜃I   and graph the outcome of  𝑇 vs. 𝜃I  .  What do you expect?   What do you 
see ?  At larger angles has the period altered in any noticeable way?  If the period really were constant, 
then Tk/T1 =1 would be true for each trial  Tk  .  Attempt to see the discrepancy at larger angles by 
graphing ( Tk/T1 -1 ) versus the angle in radians.  Attempt to curve fit your graph to a power law: i.e. 
use the form C	𝜃J   where the constants C and 𝛾   are to be found by curve fitting this function so that it 
sits on top of your numbers ( Tk/T1 -1 ).  This is a classical problem and the constants are predicted in 
our next level mechanics class.  You are determining them experimentally.  The idea here is that we 
made a restriction on the validity of our model:  “we were to keep the angles small”.  If we violate that 
restriction, then we must expect that deviations from our “ideal” predictions may start to appear.  A 
more sophisticated model will include these deviations too. 
 
Trial 𝜃I   T seconds 
1 15o  1.353 
 

2 30o 1.351 
 

3 45o 1.382 
 

4 60o 1.404 
 

5 75o 1.454 



 
 
 
Mass on a Spring 
 

 
A mass m is hanging at rest from a real spring .  The rest-stretch of the spring cancels gravity 
which then plays no further role.  The resting spot now plays the role of our origin of 
coordinates.  If we now pull the mass down yet further and release, the equation of motion is: 
 

𝑚
𝑑#𝑥
𝑑𝑡# = 	−𝑘𝑥 

 
Consolidating factors yields: 

𝑑#𝑥
𝑑𝑡# = 	−

𝑘
𝑚𝑥 

 
If we compare this with our SHO prototype equation, we see that the “constant cluster”  M

N
   stands in 

the place where we put the symbol  𝜔#  and, indeed, has the right dimensionality.  We conclude that it 
must logically follow: 

2𝜋
𝑇 	= 		O

𝑘
𝑚 

 
Equivalently we may write: 

𝑇# = 	
(2𝜋)#

𝑘 	 ∙ 𝑚 
  
This is the main result for our experiment.  It shows the dependence of the period on the moving mass 
and the spring constant. We observe, of course, no dependence on the initial displacement.   
 

Experimental Data. 
Vary the added mass and graph the outcome of  𝑇#	vs. madded .   You expect a straight line!  Does that 
happen?   
 
Trial Added Mass kg T seconds 
1 0.05 0.704 
 

2 0.1 0.805 
 

3 0.15 0.962 
 

4 0.2 1.066 
 

5 0.25 1.189 
 



We now reason as follows.  The spring itself has a total mass of 0.1665 kg … and this is substantial!  
That mass is moving when the system oscillates …but not all of itself is moving the same way!  The 
top of the spring isn’t moving at all.  The bottom of the spring is moving right along with the added 
mass.  We expect the spring to contribute “some part of itself” to the moving mass … but just how 
much?  This will be the “magic fraction” which is true for all springs.  If we express the mass in our 
fundamental relation as the sum of two parts, namely :   m = madded + m(spring fraction)    , then we expect: 
 

𝑇# = 	 (#G)
H

M
	 ∙ (madded	+	m(spring fraction)  ) 

 
If we place 𝑇#  on the vertical axis and  madded  on the horizontal axis, then this relation predicts that 
we should see the “form”  y = (slope) x  +  (intercept)  , where the slope is given by 
 

𝑠𝑙𝑜𝑝𝑒 = 	
(2𝜋)#

𝑘 	 
 
And the intercept is given by:      	

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 	
(2𝜋)#

𝑘 	 ∙ 	m(𝐬𝐩𝐫𝐢𝐧𝐠	𝐟𝐫𝐚𝐜𝐭𝐢𝐨𝐧) 
 
So perform a straight line curve fit to your   𝑇#	vs. madded      graph.  Next take the ratio of  
(intercept)/(slope)  and that should give you  m(𝐬𝐩𝐫𝐢𝐧𝐠	𝐟𝐫𝐚𝐜𝐭𝐢𝐨𝐧)   !  Finally, take the ratio 
 

m(𝐬𝐩𝐫𝐢𝐧𝐠	𝐟𝐫𝐚𝐜𝐭𝐢𝐨𝐧)/(𝑡𝑜𝑡𝑎𝑙	𝑠𝑝𝑟𝑖𝑛𝑔	𝑚𝑎𝑠𝑠) 
 
And this yields the “magic fraction”.  It should be a simple fraction.  You won’t hit it exactly … but 
you’ll be close.  What do you find ? 
 


